ΰÒײ©

  •  Î°Òײ©Ê×Ò³
  •  ½ÌѧÏîÄ¿
    ±¾¿Æ ѧÊõ˶²© MBA EMBA ¸ß²ãÖÎÀí½ÌÓý »á¼Æ˶ʿ ½ðÈÚ˶ʿ ÉÌÒµÆÊÎö˶ʿ Êý×Ö½ÌÓý ¿Î³ÌÍƼö
  •  ±±´óÖ÷Ò³
  •  Óû§µÇ¼
    ½ÌÖ°Ô±µÇ¼ ѧÉúµÇ¼ ΰÒײ©ÓÊÏä
  •  ½ÌÔ±ÕÐƸ  ¾èÔù
English
ΰÒײ©(ÖйúÇø)¹Ù·½ÍøÕ¾
ΰÒײ©(ÖйúÇø)¹Ù·½ÍøÕ¾

УÓѶ¯Ì¬

¾«²Ê»ØÊ×

Éî»ü²©¿¼ ËãɳÞÒ¿Õ¡ª¡ª¡°Éî¶ÈѧϰÓëͳ¼ÆѧÀíÂÛ¡±×êÑлáÀֳɾÙÐÐ

ʱ¼ä£º2020-11-24

AF31

×÷ΪÐÂÒ»ÂֿƼ¼¸ïÃüºÍ¹¤ÒµÀå¸ïµÄ½¹µãÇý¶¯Á¦  £¬¡°ÖÇÄÜ»¯¡±ÒѳÉΪδÀ´¹¤ÒµµÄÉú³¤Ç÷ÊÆ¡£×÷Ϊ½üÄêÀ´È˹¤ÖÇÄÜÉú³¤×îѸÃ͵ÄÁìÓòÖ®Ò»  £¬Éî¶Èѧϰ̫ͨ¹ý²ãÍøÂç»ñÈ¡·ÖÌõÀíµÄÌØÕ÷ÐÅÏ¢  £¬³ýÁËÔÚͼÏñ¡¢ÓïÒôµÈÁìÓòÀï»ñµÃÁ˽ÏÁ¿ÀֳɵÄÓ¦ÓÃÖ®Íâ  £¬Ò²ÎªÍ³¼ÆѧÀíÂÛµÄÑо¿Á¢Òì·­¿ªÁËеÄÆõ¿Ú¡£2020Äê11ÔÂ19ÈÕÉÏÎç  £¬ÓÉΰÒײ©ÉÌÎñͳ¼ÆÓë¾­¼Ã¼ÆÁ¿ÏµÖ÷ÀíµÄ¡°Éî¶ÈѧϰÓëͳ¼ÆѧÀíÂÛ¡±×êÑлáÔÚ±±´óΰÒײ©ÀֳɾÙÐС£À´×Ôº£ÄÚ×ÅÃûԺУµÄËÄλÓÅÒìͳ¼ÆѧÕßÓ¦Ñû¾Í¸÷×Ô×îеÄÀíÂÛЧ¹û¾ÙÐÐÁË·ÖÏíÓë̽ÌÖ  £¬ÎªÏßÉÏ¡¢ÏßÏÂÅäºÏ¼ÓÈëµÄÓâ500λ¸ßУʦÉúÓëÒµ½çÈËÊ¿´øÀ´ÁËÒ»³¡¾ø¼ÑµÄÍ·ÄÔѧÊõÊ¢Ñç¡£

35268

ÏßÉÏÖ±²¥


¿ªÄ»Ê½

22FD8

Ö÷³ÖÈË ÍõººÉú Î°Òײ©ÉÌÎñͳ¼ÆÓë¾­¼Ã¼ÆÁ¿Ïµ½ÌÊÚ¡¢ÏµÖ÷ÈÎ

¾Û»áÔÚΰÒײ©ÉÌÎñͳ¼ÆÓë¾­¼Ã¼ÆÁ¿ÏµÖ÷ÈÎÍõººÉú½ÌÊÚµÄÖ÷³ÖÏÂÐû²¼¿ªÄ»  £¬Âí»¯ÏéÊé¼Ç´ú±íѧԺÖ´Ç¡£ËûÈÈÇéµØ½Ó´ýÁËÏßÏÂÓëÏßÉϵÄʦÉúѧÕßÃǼÓÈë±¾´Î×êÑÐ  £¬Åú×¢ÔÚÈ˹¤ÖÇÄܵķÉËÙÉú³¤Ï  £¬Éî¶Èѧϰ×÷Ϊ´¦Öóͷ£·Ç½á¹¹»¯Êý¾ÝµÄÒ»ÖÖÊֶΠ £¬×ßÏò´ó¹æÄ£¹¤Òµ»¯Ó¦ÓÃÒѳÉΪ´ÓÕþ²ßµ¼Ïòµ½ÐÐÒµ¹²Ê¶µÄÒ»ÖÂÆ«Ïò¡£Îª´Ë  £¬½¨ÉèÉî¶Èѧϰƽ̨ÖúÁ¦¹¤ÒµÓ¦Óà  £¬¼ÓËÙÖ§³Ö¹¤ÒµÖÇÄÜ»¯  £¬Ò²ÒѾ­³ÉΪĿ½ñѧÊõ½çºÍ¸÷ÐÐÒµ×îÖËÊÖ¿ÉÈȵÄÑо¿Ó¦ÓÃÆ«Ïò  £¬ÆÚ´ý¸÷ÈËÄܹ»´Ó×êÑÐÖÐÏ໥½øÒæ  £¬ÓÐËùÊÕ»ñ¡£

12012

Ö´Ǽαö Âí»¯Ïé Î°Òײ©µ³Î¯Êé¼Ç


Ö÷Ö¼±¨¸æ

¡°ÈýÔªËØ¡°²ûÊÍ»úеѧϰµÄʵÖÊ

±¨¸æÎÊÌ⣺Prediction, Computation, and Representation ¡ª The Nature of Machine Learning

±¨¸æÈË£º ÕÅÖ¾»ª  £¬±±¾©´óѧÊýѧ¿ÆѧѧԺ

D469


ÕÅÖ¾»ª½ÌÊÚÔÚ±¨¸æÖжԻúеѧϰÓëͳ¼ÆѧµÄÓ°ÏìÓë²î±ð¾ÙÐÐÁ˼òÒª¸ÅÊö  £¬ËûÊ×ÏÈ»ØÊ×ÁËÁ½Î»ÖøÃûͳ¼Æѧ¼ÒLeo Breiman ÓëBradley Efron»®·ÖÔÚ¸÷×ÔÂÛÎÄ¡°Statistical Modeling: The Two Cultures¡±Óë¡°Prediction, Estimation, and Attribution¡±ÖжÔͳ¼ÆѧºÍ»úеѧϰ֮¼ä½¨Ä£²î±ðµÄÏà¹ØÌÖÂÛ  £¬ËµÃ÷Îú»úеѧϰµÄÉú³¤¸øͳ¼Æѧ´øÀ´µÄÉî¿ÌÓ°Ïì¡£ÊÜ¡°Éî¶Èѧϰ¡±Ó롰ͳ¼Æѧ¡±ÕâÁ½ÖÖ½¨Ä£ÎÄ»¯²î±ðÌÖÂÛµÄÆô·¢  £¬ÕŽÌÊÚÌá³öÁËÐðÊö»úеѧϰµÄÈýÒªËØ£ºPrediction, ComputationÓëRepresentation¡£ÒÔPredictionΪ×îÖÕÄ¿µÄ  £¬½«Computation×÷ΪÎÊÌâÇó½âµÄ;¾¶  £¬´Ó¡°Representation¡±½Ç¶ÈÀ´Ú¹ÊÍ»úеѧϰ¡£ÕŽÌÊÚÅú×¢  £¬ÔÚComputation·½Ãæ  £¬»úеѧϰÖ÷Òª¹Ø×¢·ÖÀà  £¬¾ÛÀàµÈÀëÉ¢ÎÊÌâ £»³ýÁËÔõÑù»ùÓÚѵÁ·¼¯¾ÙÐÐÓÅ»¯Çó½âÍâ  £¬»úеѧϰ»¹¹Ø×¢ÔõÑùÌá¸ßÔÚ²âÊÔ¼¯Éϵķº»¯ÐÔÄÜ  £¬ÒÔʵÏÖÓÅ»¯Ëã·¨ºÍ·º»¯ÀíÂÛµÄÓлúͳһ¡£¶øRepresentation°üÀ¨ÎïÀí½¨Ä£ºÍÌØÕ÷ÌáÈ¡  £¬ËüµÄÉú³¤¹á´®×ÅÔõÑù½â¾ö¡°Dimensionality Curse¡±ºÍʹÓá°Dimensionality Blessing¡±  £¬Éî¶ÈѧϰÔòÍêÉÆÚ¹ÊÍÁËÕâÁ½ÕßÖ®¼äµÄȨºâ¡£ÕÅÖ¾»ª½ÌÊÚÌåÏÖ  £¬ËüÒ²ÊÇÆù½ñΪֹ°Ñ¡°Data Modeling Culture¡±ºÍ¡°Algorithmic Modeling Culture¡±ÈÚΪһÌåµÄ×î¼ÑÊÖÒÕ;¾¶¡£


Éî¶ÈÉ­ÁÖ¡°·­¿ªÁË¡±·Ç²ÎÉî¶ÈѧϰµÄ¡°´óÃÅ¡±

±¨¸æÎÊÌ⣺·Ç²ÎÊýÉî¶ÈѧϰÀíÂÛ³õ̽

±¨¸æÈË£º ¸ßξ  £¬ÄϾ©´óѧÈ˹¤ÖÇÄÜѧԺ

CA68


¸ßξ½ÌÊڵĿÎÌâ×é½üÄêÀ´ÖÂÁ¦ÓڷDzÎÉî¶ÈѧϰµÄÑо¿  £¬Æä»ù±¾¹¹½¨ÊǷDzÎÊý»¯¡¢²»¿É΢·ÖµÄËæ»úÉ­ÁÖÄ£×Ó  £¬¶ø·Ç²ÎÉî¶ÈѧϰÔÚÖî¶àʹÃüÖÐÈ¡µÃÁËÓëÉî¶ÈѧϰÏ൱µÄЧ¹û  £¬ÌØÊâ¶ÔÀëÉ¢ÐÍѧϰʹÃüÍùÍùÌåÏÖ³ö¸üºÃµÄЧ¹û¡£¸ß½ÌÊڵı¨¸æΧÈÆËûºÍËûµÄ¿ÎÌâ×éÔڷDzÎÉî¶Èѧϰ·½ÃæÈ¡µÃµÄÀíÂÛÆðÔ´Ï£Íû  £¬×ÅÖØÏÈÈÝÁËÊÕÁ²½çµÄÑо¿  £¬²¢Ú¹ÊÍÁËÆäÔõÑùÔÚÀíÂÛÉÏÖ¸µ¼·Ç²ÎÉî¶ÈÄ£×ӵĹ¹½¨¡£¸ß½ÌÊÚÒÔ¡°Deep Forests¡±ÎªÇÐÈëµã  £¬½«ÏÖÔÚµÄÉî¶ÈѧϰÊÓ×÷¶à²ã¹Å°åÉñ¾­ÍøÂç×é³É¡£Í¨Ì«¹ýÎöÆä²ãÊý¹ýÉî¶øÔì³ÉµÄѵÁ·ÄÑÌâµÄÎÊÌâ  £¬¸ß½ÌÊÚÌåÏÖ¿ÉʹÓÃÒ»Á¬¿É΢µÄ¼¤»îº¯Êý£¨Relu£©  £¬½ÓÄÉBPËã·¨¾ÙÐÐѵÁ·¡£Óë¹Å°å»úеѧϰҪÁìÏà±È  £¬Éî¶Èѧϰ²»ÐèÒªÈ˹¤Éè¼ÆÊäÈ루ÈçͼÏñ£©  £¬¶øÊÇͨ¹ýËã·¨×Ô¶¯Ñ§Ï°¡ £»ùÓÚ´Ë  £¬¸ß½ÌÊÚÖ¸³ö  £¬ÏÖÔÚµÄÉî²ãÉî¶ÈѧϰЧ¹ûµÄÓÅÒìÌåÏÖÖ÷ÒªÔ´ÓÚ3¸öÔµ¹ÊÔ­ÓÉ£º1£©Öð²ãµÄÊý¾Ý´¦Öóͷ£ £»2£©ÌØÕ÷µÄÄÚ²¿±ä»»¡£3£©×㹻ǿµÄÄ£×ÓÖØƯºó¡£µ«Í¬Ê±»ùÓÚÉñ¾­ÍøÂçµÄÉî¶ÈѧϰҲ±£´æÈý¸öÎÊÌ⣺1£©ÈÝÒ×¹ýÄâºÏ¡£2£©ºÜÄÑѵÁ·¡£3£©ÅÌË㿪Ïú´ó¡£ÆñÂÛÏÖʵӦÓÃÕÕ¾ÉѧÊõÑо¿µÄ²ãÃæ  £¬¶¼ÆÚÍûµÃ³öÑо¿·ÇÉñ¾­ÍøÂçµÄÉî¶ÈѧϰҪÁì  £¬Óɴ˶øÌá³öÁË¡°Deep Forests¡±µÄ¿´·¨¡£¡°Deep Forests¡±Ê¹ÓÃÁË¡°Random Forest¡±  £¬Äܹ»ÊµÏÖÖð²ã´¦Öóͷ£  £¬»ñµÃеÄÌØÕ÷¡£ÔÚÏÖʵµÄÌ×ÏÖ°¸ÀýÖÐ  £¬ÆäÄ£×ÓµÄÌåÏÖÓÅÓÚÂß¼­»Ø¹éºÍDNN¡£ÎªÁ˽øÒ»²½Ö¤ÊµËüµÄÓÅÔ½ÐÔ  £¬¸ß½ÌÊÚ¸ø³öÁËDeep ForestµÄÌØÊâÇéÐÎ  £¬²¢Õë¹ØÓÚÖª×ãÌض¨Ìõ¼þµÄÄ£×Ó  £¬¸ø³ö²î±ð±äÌåϵÄforestsµÄÒ»ÖÂÐÔ֤ʵºÍÊÕÁ²ËÙÂÊ֤ʵ  £¬¶ÔÉî¶ÈѧϰµÄ½¨Ä£·½·¨ÌṩÁ˺ܺõÄÖ¸µ¼Æ«Ïò¡£


¡°ÈýÁ¦¡±Æë·¢¡ª¡ªÌ½ÌÖÉî¶ÈѧϰµÄÀíÂÛÐÔ×Ó

±¨¸æÎÊÌ⣺Deep learning: from theory to algorithm

±¨¸æÈË£º ÍõÁ¢Íþ  £¬±±¾©´óѧÐÅÏ¢¿ÆѧÊÖÒÕѧԺ

11D77


ÍõÁ¢Íþ½ÌÊÚÔÚ±¨¸æÖÐÖصãÏÈÈÝÁËÆäÍŶӽüÆÚÔÚÉî¶ÈѧϰÀíÂÛ·½ÃæµÄÑо¿Ð§¹û¼°Æä¶ÔËã·¨Éè¼ÆµÄÖ¸µ¼¡£ËûÒÔΪÖ÷Òª¿ÉÒÔ´ÓÈý¸ö·½ÃæÑо¿Éî¶ÈѧϰµÄÀíÂÛÐÔ×Ó£ºÄ£×ÓµÄÌåÏÖÄÜÁ¦¡¢ÔÚ²âÊÔ¼¯Éϵķº»¯ÄÜÁ¦ÒÔ¼°ÔÚѵÁ·¼¯ÉϵÄÓÅ»¯ÐÔ×Ó¡£¹ØÓÚÉî¶ÈÉñ¾­ÍøÂçÌåÏÖÄÜÁ¦µÄÑо¿  £¬Íõ½ÌÊÚ¼°ÆäÍŶÓ֤ʵÎúÔÚÍøÂç¿í¶ÈÑÏ¿á´óÓÚÊäÈëά¶ÈÒÔ¼°Éî¶È¿ÉÒÔÎÞÏÞÔöÌíµÄÌõ¼þÏ  £¬Éî¶ÈÉñ¾­ÍøÂçÊÇÒ»¸öUniversal Approximator  £¬ÄÜÒÔí§Ò⾫¶ÈÆȽüÒ»¸ö¿É²âº¯Êý¡£¶ø¹ØÓÚÉî¶ÈѧϰµÄ·º»¯ÄÜÁ¦µÄÑо¿  £¬Íõ½ÌÊÚÌåÏÖ  £¬ËäÈ»Éî¶ÈÉñ¾­ÍøÂçÊÇÒ»¸ö¹ý²ÎÊý»¯µÄÄ£×Ó  £¬µ«ÈÔÈ»ÌåÏÖ³öºÜÇ¿µÄ·º»¯ÄÜÁ¦  £¬Òò´Ë¾­µäµÄͳ¼ÆѧϰÀíÂÛ¿ÉÄܲ»ÔÙÊÊÓá£Íõ½ÌÊÚ»®·Ö´ÓÄ£×ÓÖØƯºóºÍÑ·üç㷨µÄ½Ç¶ÈÚ¹ÊÍÁËÉî¶ÈѧϰµÄ·º»¯ÐÔÄÜ  £¬²¢¸ø³öÁËÔÚʹÓÃSGLDËã·¨µÄÌõ¼þÏ  £¬Éî¶ÈѧϰµÄ·º»¯Îó²îÉϽç¡£×îºó  £¬¹ØÓÚÉî¶ÈѧϰµÄÓÅ»¯Ëã·¨µÄÑо¿  £¬Íõ½ÌÊÚ֤ʵÎúÔÚÉî¶ÈÍøÂç³ä·Ö¿íÒÔ¼°Æä²ÎÊý³õʼ»¯µÄ»úÖÆÊDZ»È«ÐÄÉè¼ÆµÄÌõ¼þÏ  £¬´ÓËæ»ú³õʼµã³ö·¢  £¬Ê¹Óã¨Ëæ»ú£©ÌݶÈϽµ·¨¿ÉÒÔÒԺܴóµÄ¸ÅÂÊÕÒµ½È«¾Ö×îÓŵã  £¬²¢ÇÒÄִܵïÖ¸ÊýÊÕÁ²¡ £»ùÓÚ´ËÀíÂÛЧ¹û  £¬Íõ½ÌÊÚÓëÆäÍŶÓÉè¼ÆÁ˶þ½×ÓÅ»¯Ëã·¨¡ª¡ªGram-Gauss-NewtonËã·¨  £¬ÓÃÒÔѵÁ·Éî¶ÈÉñ¾­ÍøÂç¡£¸ÃËã·¨¾ßÓжþ½×ÊÕÁ²ËÙÂÊ  £¬²¢ÇÒÿ´Îµü´úµÄÅÌËãÖØƯºóÓëSGDÏà·Â¡£


ÆÊÎöAIÀ˳±µÄÄ»ºóÒýÇ桪¡ªÉî¶È¾í»ýÉñ¾­ÍøÂç

±¨¸æÎÊÌ⣺Progressive Principle Component Analysis for Compressing Deep Convolutional Neural Networks

±¨¸æÈË£ºÖܾ²  £¬ÖйúÈËÃñ´óѧͳ¼ÆѧԺ

B758

Öܾ²½ÌÊÚÔòÒÔÑо¿ÄîÍ·ÒýÈë  £¬¼òÎöÁË×÷ΪÉî¶Èѧϰ¾­µäÍøÂçµÄ¾í»ýÉñ¾­ÍøÂçËæ×ŲãÊý¼ÓÉî  £¬¾í»ýµÄsize¼õС  £¬µ«¸öÊýѸËÙÔöÌí  £¬´Ó¶øµ¼ÖÂȨÖؾØÕówµÄά¶È¼«¸ßµÄÎÊÌâ £»Í¬Ê±ÃæÁÙComputationºÍStorageµÄÄÑÌâ  £¬Ò²ÄÑÒÔÖ±½Ó°²ÅÅÔÚÒƶ¯¶Ë¡ £»ùÓÚ´Ë  £¬ÖܽÌÊÚÌá³öÁËÒ»ÖÖ½¥½øÖ÷ÒòËØÆÊÎö(PPCA)ÒªÁì¶Ô¾í»ý¾ÙÐнµÎ¬À´Ñ¹ËõÉî¶È¾í»ýÉñ¾­ÍøÂç¡£Ïêϸ¶øÑÔ  £¬´ÓÒ»¸öÔ¤ÏÈÖ¸¶¨µÄ²ã×îÏÈ  £¬Öð²½Òƶ¯µ½×îºóµÄÊä³ö²ã¡£¹ØÓÚÿ¸öÄ¿µÄ²ã  £¬PPCA½«Ã¿Ò»´ÎµÄ¾í»ý²ãreshape³ÉÒ»¸ö¾ØÕóºó  £¬Ñ¡ÔñÀۼƷ½²îТ˳ÂÊ×î¸ßµÄ¼¸¸ö  £¬¾ÙÐÐPCA½µÎ¬  £¬Õ⽫ÏÔÖøïÔÌ­Ä¿½ñ²ãÖеÄÄÚºËÊýÄ¿¡£½µÎ¬ºó  £¬Ä¿½ñ²ãµÄshape±¬·¢¸Ä±ä  £¬Ó°ÏìÁËÏÂÒ»¸ö¾í»ý²ã  £¬ÒªÏȶÔÏÂÒ»²ãµÄshape¾ÙÐÐÐÞÕýºóÔÙ¾ÙÐÐPCA½µÎ¬  £¬ÓÉÓÚÄ¿½ñ²ãÖÐʹÓõÄÄÚºËÊýÄ¿¾öÒéÁËÏÂÒ»²ãµÄͨµÀÊýÄ¿  £¬ÓÃÓÚÏÂÒ»²ãµÄͨµÀÒ²´ó´óïÔÌ­  £¬Õû¸öÄ£×ӽṹ¿ÉÒÔ±»´ó·ùѹËõ  £¬²ÎÊýµÄÊýÄ¿ºÍÍÆÀí±¾Ç®¶¼¿ÉÒÔ´ó·ù½µµÍ¡£ÖܽÌÊÚ½«Æä³Æ֮Ϊ¡°Progressive Principle Component Analysis¡±¡£ÖܽÌÊÚµÄÑо¿ÖÐÔÚһЩ¾­µäµÄCNNs (AlexNet, VGGNet, ResNetºÍMobileNet)ºÍ»ù×¼Êý¾Ý¼¯ÉÏÆÀ¹ÀÁ˸ÃÒªÁìµÄÓÐÓÃÐÔ¡£ÊµÑéÅú×¢  £¬ÔÚijЩÌض¨Ä£×ÓÀï  £¬PPCAµÄÄ£×ÓѹËõÂÊ´ó¡¢Õ¹ÍûËÙÂÊ¿ì  £¬²¢ÇÒ¾«¶ÈûÓÐÌ«´óËðʧ¡£µ«PPCAÎÞ·¨×öµ½ÔÚËùÓеÄÄ£×ÓÖж¼Áè¼ÝÆäËûµÄ¾ºÕùµÐÊÖ¡£×îºóÖܽÌÊÚÖ¸³ö  £¬ÏÖÔÚPPCAûÓÐ˼Á¿ÔõÑùÑ¡È¡×îÓŵĵ÷Àí²ÎÊý  £¬Òò´ËÉÐÓнøÒ»²½µÄÑо¿¿Õ¼ä¡£

ÒÔÐÅÏ¢ÊÖÒÕΪ´ú±íµÄµÚËĴι¤Òµ¸ïÃüÕýÍƶ¯×ÅÎÒÃÇ×ßÈëÈ˹¤ÖÇÄÜʱ´ú  £¬ÅãͬȫÇòµÚÎå´Î¹¤Òµ×ªÒÆ  £¬´óÊý¾ÝÕýÔÚ³¯×ÅÉú²úÒªËصÄÐÎ̬Ñݽø  £¬Éî¶ÈѧϰÊǽüÄêÀ´Ëæ×ÅÈ˹¤ÖÇÄÜÐËÆð¶ø³ö¾µÂÊ×î¸ßµÄÃû´ÊÖ®Ò»  £¬Óëͳ¼ÆѧµÄÍŽáÓëÅöײÊƱػá²Á³öеĻ𻨡£±¾´Î×êÑлá¶Ôͳ¼Æѧ¿ÆÓëÉî¶ÈѧϰµÄÍŽáÑо¿ÓëÉú³¤Æðµ½ÁËÆð¾¢×÷Óà  £¬Í¬Ê±Ò²Ôö½øÁËÏà¹ØÁìÓòר¼ÒѧÕßÃÇÖ®¼äµÄ½»Á÷Óë̽ÌÖ  £¬ÎªÉú³¤Í³¼ÆÊý¾Ý¿ÆѧÁ¢Ò콨ÉèÁËÓÅÒìµÄƽ̨  £¬Óë»áʦÉúÓëѧÕ߶¼ÌåÏÖ»ñÒæ·Ëdz¡£

D824


¡¾Î°Òײ©ÉÌÎñͳ¼ÆÓë¾­¼Ã¼ÆÁ¿Ïµ¡¿

ΰÒײ©ÉÌÎñͳ¼ÆÓë¾­¼Ã¼ÆÁ¿Ïµ´«³Ð±±¾©´óѧÃ÷±æÉÆ˼¡¢º£ÄÉ°Ù´¨µÄóÆѧ¾«Éñ  £¬±ü³ÖΰÒײ©ÖÎÀíѧԺ¡°´´Á¢ÖÎÀí֪ʶ  £¬×÷ÓýÉ̽çÊ×ÄÔ  £¬Íƶ¯Éç»áÇ°½ø¡±µÄÀúʷʹÃü  £¬ÒÔ¡°Î°Òײ©Í·ÄÔÁ¦¡±ÎªÃª  £¬¾Û½¹Ò»ÏµÁÐÉÌÎñͳ¼ÆÁìÓòÖØ´ó¿ÎÌâÕö¿ªÑо¿Ì½ÌÖ  £¬ÖÂÁ¦ÓÚÍƸÐÈ˹¤ÖÇÄÜÓëͳ¼ÆѧÀíÂ۵Ľ»Á÷ÓëÉú³¤¡£ÖµÑ§Ôº½¨Éè35ÖÜÄêÖ®¼Ê  £¬¼¯Î°Òײ©Ñ§ÕßÖ®ÖÇ»Û  £¬½¨Éî¶È½»Á÷֮ƽ̨  £¬Í¨Ì«¹ýÏíÌÖÂÛѧÊõÑо¿Ð§¹û  £¬ÖúÁ¦Ñ§ÊõÉú³¤  £¬Íƶ¯Éç»áÇ°½ø¡£


ÉÏÒ»Ìõ£º±±´óΰÒײ©¸ßÖª´òÔì¡°Èý¾«¡±¹¤»áÆ·ÅÆ
ÏÂÒ»Ìõ£ºÕâ¿ÉÄÜÊÇ×îÎÂÜ°¡¢×îÌرðµÄÐÂÊéÐû²¼¡ª¡ªÀ÷ÒÔÄþ½ÌÊÚ¾ÅÊ®ÖÜË껪µ®Îļ¯Ðû²¼»áôß´Ó½ÌÁùÊ®ÎåÖÜÄêÔ˶¯
·ÖÏí

ghalumni@gsm.pku.edu.cn

±±¾©Êк£µíÇøÒúÍ԰·5ºÅΰÒײ©2ºÅÂ¥501ÊÒ

?2017 ΰÒײ© °æȨËùÓÐ    ¾©ICP±¸05065075-1
¡¾ÍøÕ¾µØͼ¡¿¡¾sitemap¡¿