×÷ΪÐÂÒ»ÂֿƼ¼¸ïÃüºÍ¹¤ÒµÀå¸ïµÄ½¹µãÇý¶¯Á¦£¬¡°ÖÇÄÜ»¯¡±ÒѳÉΪδÀ´¹¤ÒµµÄÉú³¤Ç÷ÊÆ¡£×÷Ϊ½üÄêÀ´È˹¤ÖÇÄÜÉú³¤×îѸÃ͵ÄÁìÓòÖ®Ò»£¬Éî¶Èѧϰ̫ͨ¹ý²ãÍøÂç»ñÈ¡·ÖÌõÀíµÄÌØÕ÷ÐÅÏ¢£¬³ýÁËÔÚͼÏñ¡¢ÓïÒôµÈÁìÓòÀï»ñµÃÁ˽ÏÁ¿ÀֳɵÄÓ¦ÓÃÖ®Í⣬ҲΪͳ¼ÆѧÀíÂÛµÄÑо¿Á¢Òì·¿ªÁËеÄÆõ¿Ú¡£2020Äê11ÔÂ19ÈÕÉÏÎ磬ÓÉΰÒײ©ÉÌÎñͳ¼ÆÓ뾼üÆÁ¿ÏµÖ÷ÀíµÄ¡°Éî¶ÈѧϰÓëͳ¼ÆѧÀíÂÛ¡±×êÑлáÔÚ±±´óΰÒײ©ÀֳɾÙÐС£À´×Ôº£ÄÚ×ÅÃûԺУµÄËÄλÓÅÒìͳ¼ÆѧÕßÓ¦Ñû¾Í¸÷×Ô×îеÄÀíÂÛЧ¹û¾ÙÐÐÁË·ÖÏíÓë̽ÌÖ£¬ÎªÏßÉÏ¡¢ÏßÏÂÅäºÏ¼ÓÈëµÄÓâ500λ¸ßУʦÉúÓëÒµ½çÈËÊ¿´øÀ´ÁËÒ»³¡¾ø¼ÑµÄÍ·ÄÔѧÊõÊ¢Ñç¡£
ÏßÉÏÖ±²¥
¿ªÄ»Ê½
Ö÷³ÖÈË ÍõººÉú ΰÒײ©ÉÌÎñͳ¼ÆÓ뾼üÆÁ¿Ïµ½ÌÊÚ¡¢ÏµÖ÷ÈÎ
¾Û»áÔÚΰÒײ©ÉÌÎñͳ¼ÆÓ뾼üÆÁ¿ÏµÖ÷ÈÎÍõººÉú½ÌÊÚµÄÖ÷³ÖÏÂÐû²¼¿ªÄ»£¬Âí»¯ÏéÊé¼Ç´ú±íѧԺÖ´ǡ£ËûÈÈÇéµØ½Ó´ýÁËÏßÏÂÓëÏßÉϵÄʦÉúѧÕßÃǼÓÈë±¾´Î×êÑУ¬Åú×¢ÔÚÈ˹¤ÖÇÄܵķÉËÙÉú³¤Ï£¬Éî¶Èѧϰ×÷Ϊ´¦Öóͷ£·Ç½á¹¹»¯Êý¾ÝµÄÒ»ÖÖÊֶΣ¬×ßÏò´ó¹æÄ£¹¤Òµ»¯Ó¦ÓÃÒѳÉΪ´ÓÕþ²ßµ¼Ïòµ½ÐÐÒµ¹²Ê¶µÄÒ»ÖÂÆ«Ïò¡£Îª´Ë£¬½¨ÉèÉî¶Èѧϰƽ̨ÖúÁ¦¹¤ÒµÓ¦Ó㬼ÓËÙÖ§³Ö¹¤ÒµÖÇÄÜ»¯£¬Ò²ÒѾ³ÉΪĿ½ñѧÊõ½çºÍ¸÷ÐÐÒµ×îÖËÊÖ¿ÉÈȵÄÑо¿Ó¦ÓÃÆ«Ïò£¬ÆÚ´ý¸÷ÈËÄܹ»´Ó×êÑÐÖÐÏ໥½øÒ棬ÓÐËùÊÕ»ñ¡£
Ö´Ǽαö Âí»¯Ïé ΰÒײ©µ³Î¯Êé¼Ç
Ö÷Ö¼±¨¸æ
¡°ÈýÔªËØ¡°²ûÊÍ»úеѧϰµÄʵÖÊ
±¨¸æÎÊÌ⣺Prediction, Computation, and Representation ¡ª The Nature of Machine Learning
±¨¸æÈË£º ÕÅÖ¾»ª£¬±±¾©´óѧÊýѧ¿ÆѧѧԺ
ÕÅÖ¾»ª½ÌÊÚÔÚ±¨¸æÖжԻúеѧϰÓëͳ¼ÆѧµÄÓ°ÏìÓë²î±ð¾ÙÐÐÁ˼òÒª¸ÅÊö£¬ËûÊ×ÏÈ»ØÊ×ÁËÁ½Î»ÖøÃûͳ¼Æѧ¼ÒLeo Breiman ÓëBradley Efron»®·ÖÔÚ¸÷×ÔÂÛÎÄ¡°Statistical Modeling: The Two Cultures¡±Óë¡°Prediction, Estimation, and Attribution¡±ÖжÔͳ¼ÆѧºÍ»úеѧϰ֮¼ä½¨Ä£²î±ðµÄÏà¹ØÌÖÂÛ£¬ËµÃ÷Îú»úеѧϰµÄÉú³¤¸øͳ¼Æѧ´øÀ´µÄÉî¿ÌÓ°Ïì¡£ÊÜ¡°Éî¶Èѧϰ¡±Ó롰ͳ¼Æѧ¡±ÕâÁ½ÖÖ½¨Ä£ÎÄ»¯²î±ðÌÖÂÛµÄÆô·¢£¬ÕŽÌÊÚÌá³öÁËÐðÊö»úеѧϰµÄÈýÒªËØ£ºPrediction, ComputationÓëRepresentation¡£ÒÔPredictionΪ×îÖÕÄ¿µÄ£¬½«Computation×÷ΪÎÊÌâÇó½âµÄ;¾¶£¬´Ó¡°Representation¡±½Ç¶ÈÀ´Ú¹ÊÍ»úеѧϰ¡£ÕŽÌÊÚÅú×¢£¬ÔÚComputation·½Ã棬»úеѧϰÖ÷Òª¹Ø×¢·ÖÀ࣬¾ÛÀàµÈÀëÉ¢ÎÊÌ⣻³ýÁËÔõÑù»ùÓÚѵÁ·¼¯¾ÙÐÐÓÅ»¯Çó½âÍ⣬»úеѧϰ»¹¹Ø×¢ÔõÑùÌá¸ßÔÚ²âÊÔ¼¯Éϵķº»¯ÐÔÄÜ£¬ÒÔʵÏÖÓÅ»¯Ëã·¨ºÍ·º»¯ÀíÂÛµÄÓлúͳһ¡£¶øRepresentation°üÀ¨ÎïÀí½¨Ä£ºÍÌØÕ÷ÌáÈ¡£¬ËüµÄÉú³¤¹á´®×ÅÔõÑù½â¾ö¡°Dimensionality Curse¡±ºÍʹÓá°Dimensionality Blessing¡±£¬Éî¶ÈѧϰÔòÍêÉÆÚ¹ÊÍÁËÕâÁ½ÕßÖ®¼äµÄȨºâ¡£ÕÅÖ¾»ª½ÌÊÚÌåÏÖ£¬ËüÒ²ÊÇÆù½ñΪֹ°Ñ¡°Data Modeling Culture¡±ºÍ¡°Algorithmic Modeling Culture¡±ÈÚΪһÌåµÄ×î¼ÑÊÖÒÕ;¾¶¡£
Éî¶ÈÉÁÖ¡°·¿ªÁË¡±·Ç²ÎÉî¶ÈѧϰµÄ¡°´óÃÅ¡±
±¨¸æÎÊÌ⣺·Ç²ÎÊýÉî¶ÈѧϰÀíÂÛ³õ̽
±¨¸æÈË£º ¸ßÄϾ©´óѧÈ˹¤ÖÇÄÜѧԺ
¸ßξ½ÌÊڵĿÎÌâ×é½üÄêÀ´ÖÂÁ¦ÓڷDzÎÉî¶ÈѧϰµÄÑо¿£¬Æä»ù±¾¹¹½¨ÊǷDzÎÊý»¯¡¢²»¿É΢·ÖµÄËæ»úÉÁÖÄ£×Ó£¬¶ø·Ç²ÎÉî¶ÈѧϰÔÚÖî¶àʹÃüÖÐÈ¡µÃÁËÓëÉî¶ÈѧϰÏ൱µÄЧ¹û£¬ÌØÊâ¶ÔÀëÉ¢ÐÍѧϰʹÃüÍùÍùÌåÏÖ³ö¸üºÃµÄЧ¹û¡£¸ß½ÌÊڵı¨¸æΧÈÆËûºÍËûµÄ¿ÎÌâ×éÔڷDzÎÉî¶Èѧϰ·½ÃæÈ¡µÃµÄÀíÂÛÆðÔ´Ï£Íû£¬×ÅÖØÏÈÈÝÁËÊÕÁ²½çµÄÑо¿£¬²¢Ú¹ÊÍÁËÆäÔõÑùÔÚÀíÂÛÉÏÖ¸µ¼·Ç²ÎÉî¶ÈÄ£×ӵĹ¹½¨¡£¸ß½ÌÊÚÒÔ¡°Deep Forests¡±ÎªÇÐÈëµã£¬½«ÏÖÔÚµÄÉî¶ÈѧϰÊÓ×÷¶à²ã¹Å°åÉñ¾ÍøÂç×é³É¡£Í¨Ì«¹ýÎöÆä²ãÊý¹ýÉî¶øÔì³ÉµÄѵÁ·ÄÑÌâµÄÎÊÌ⣬¸ß½ÌÊÚÌåÏÖ¿ÉʹÓÃÒ»Á¬¿É΢µÄ¼¤»îº¯Êý£¨Relu£©£¬½ÓÄÉBPËã·¨¾ÙÐÐѵÁ·¡£Óë¹Å°å»úеѧϰҪÁìÏà±È£¬Éî¶Èѧϰ²»ÐèÒªÈ˹¤Éè¼ÆÊäÈ루ÈçͼÏñ£©£¬¶øÊÇͨ¹ýËã·¨×Ô¶¯Ñ§Ï°¡£»ùÓÚ´Ë£¬¸ß½ÌÊÚÖ¸³ö£¬ÏÖÔÚµÄÉî²ãÉî¶ÈѧϰЧ¹ûµÄÓÅÒìÌåÏÖÖ÷ÒªÔ´ÓÚ3¸öÔµ¹ÊÔÓÉ£º1£©Öð²ãµÄÊý¾Ý´¦Öóͷ££»2£©ÌØÕ÷µÄÄÚ²¿±ä»»¡£3£©×㹻ǿµÄÄ£×ÓÖØƯºó¡£µ«Í¬Ê±»ùÓÚÉñ¾ÍøÂçµÄÉî¶ÈѧϰҲ±£´æÈý¸öÎÊÌ⣺1£©ÈÝÒ×¹ýÄâºÏ¡£2£©ºÜÄÑѵÁ·¡£3£©ÅÌË㿪Ïú´ó¡£ÆñÂÛÏÖʵӦÓÃÕÕ¾ÉѧÊõÑо¿µÄ²ãÃ棬¶¼ÆÚÍûµÃ³öÑо¿·ÇÉñ¾ÍøÂçµÄÉî¶ÈѧϰҪÁ죬Óɴ˶øÌá³öÁË¡°Deep Forests¡±µÄ¿´·¨¡£¡°Deep Forests¡±Ê¹ÓÃÁË¡°Random Forest¡±£¬Äܹ»ÊµÏÖÖð²ã´¦Öóͷ££¬»ñµÃеÄÌØÕ÷¡£ÔÚÏÖʵµÄÌ×ÏÖ°¸ÀýÖУ¬ÆäÄ£×ÓµÄÌåÏÖÓÅÓÚÂß¼»Ø¹éºÍDNN¡£ÎªÁ˽øÒ»²½Ö¤ÊµËüµÄÓÅÔ½ÐÔ£¬¸ß½ÌÊÚ¸ø³öÁËDeep ForestµÄÌØÊâÇéÐΣ¬²¢Õë¹ØÓÚÖª×ãÌض¨Ìõ¼þµÄÄ£×Ó£¬¸ø³ö²î±ð±äÌåϵÄforestsµÄÒ»ÖÂÐÔ֤ʵºÍÊÕÁ²ËÙÂÊ֤ʵ£¬¶ÔÉî¶ÈѧϰµÄ½¨Ä£·½·¨ÌṩÁ˺ܺõÄÖ¸µ¼Æ«Ïò¡£
¡°ÈýÁ¦¡±Æë·¢¡ª¡ªÌ½ÌÖÉî¶ÈѧϰµÄÀíÂÛÐÔ×Ó
±¨¸æÎÊÌ⣺Deep learning: from theory to algorithm
±¨¸æÈË£º ÍõÁ¢Íþ£¬±±¾©´óѧÐÅÏ¢¿ÆѧÊÖÒÕѧԺ
ÍõÁ¢Íþ½ÌÊÚÔÚ±¨¸æÖÐÖصãÏÈÈÝÁËÆäÍŶӽüÆÚÔÚÉî¶ÈѧϰÀíÂÛ·½ÃæµÄÑо¿Ð§¹û¼°Æä¶ÔËã·¨Éè¼ÆµÄÖ¸µ¼¡£ËûÒÔΪÖ÷Òª¿ÉÒÔ´ÓÈý¸ö·½ÃæÑо¿Éî¶ÈѧϰµÄÀíÂÛÐÔ×Ó£ºÄ£×ÓµÄÌåÏÖÄÜÁ¦¡¢ÔÚ²âÊÔ¼¯Éϵķº»¯ÄÜÁ¦ÒÔ¼°ÔÚѵÁ·¼¯ÉϵÄÓÅ»¯ÐÔ×Ó¡£¹ØÓÚÉî¶ÈÉñ¾ÍøÂçÌåÏÖÄÜÁ¦µÄÑо¿£¬Íõ½ÌÊÚ¼°ÆäÍŶÓ֤ʵÎúÔÚÍøÂç¿í¶ÈÑÏ¿á´óÓÚÊäÈëά¶ÈÒÔ¼°Éî¶È¿ÉÒÔÎÞÏÞÔöÌíµÄÌõ¼þÏ£¬Éî¶ÈÉñ¾ÍøÂçÊÇÒ»¸öUniversal Approximator£¬ÄÜÒÔí§Ò⾫¶ÈÆȽüÒ»¸ö¿É²âº¯Êý¡£¶ø¹ØÓÚÉî¶ÈѧϰµÄ·º»¯ÄÜÁ¦µÄÑо¿£¬Íõ½ÌÊÚÌåÏÖ£¬ËäÈ»Éî¶ÈÉñ¾ÍøÂçÊÇÒ»¸ö¹ý²ÎÊý»¯µÄÄ£×Ó£¬µ«ÈÔÈ»ÌåÏÖ³öºÜÇ¿µÄ·º»¯ÄÜÁ¦£¬Òò´Ë¾µäµÄͳ¼ÆѧϰÀíÂÛ¿ÉÄܲ»ÔÙÊÊÓá£Íõ½ÌÊÚ»®·Ö´ÓÄ£×ÓÖØƯºóºÍÑ·üç㷨µÄ½Ç¶ÈÚ¹ÊÍÁËÉî¶ÈѧϰµÄ·º»¯ÐÔÄÜ£¬²¢¸ø³öÁËÔÚʹÓÃSGLDËã·¨µÄÌõ¼þÏ£¬Éî¶ÈѧϰµÄ·º»¯Îó²îÉϽ硣×îºó£¬¹ØÓÚÉî¶ÈѧϰµÄÓÅ»¯Ëã·¨µÄÑо¿£¬Íõ½ÌÊÚ֤ʵÎúÔÚÉî¶ÈÍøÂç³ä·Ö¿íÒÔ¼°Æä²ÎÊý³õʼ»¯µÄ»úÖÆÊDZ»È«ÐÄÉè¼ÆµÄÌõ¼þÏ£¬´ÓËæ»ú³õʼµã³ö·¢£¬Ê¹Óã¨Ëæ»ú£©ÌݶÈϽµ·¨¿ÉÒÔÒԺܴóµÄ¸ÅÂÊÕÒµ½È«¾Ö×îÓŵ㣬²¢ÇÒÄִܵïÖ¸ÊýÊÕÁ²¡£»ùÓÚ´ËÀíÂÛЧ¹û£¬Íõ½ÌÊÚÓëÆäÍŶÓÉè¼ÆÁ˶þ½×ÓÅ»¯Ëã·¨¡ª¡ªGram-Gauss-NewtonËã·¨£¬ÓÃÒÔѵÁ·Éî¶ÈÉñ¾ÍøÂç¡£¸ÃËã·¨¾ßÓжþ½×ÊÕÁ²ËÙÂÊ£¬²¢ÇÒÿ´Îµü´úµÄÅÌËãÖØƯºóÓëSGDÏà·Â¡£
ÆÊÎöAIÀ˳±µÄÄ»ºóÒýÇ桪¡ªÉî¶È¾í»ýÉñ¾ÍøÂç
±¨¸æÎÊÌ⣺Progressive Principle Component Analysis for Compressing Deep Convolutional Neural Networks
±¨¸æÈË£ºÖܾ²£¬ÖйúÈËÃñ´óѧͳ¼ÆѧԺ
Öܾ²½ÌÊÚÔòÒÔÑо¿ÄîÍ·ÒýÈ룬¼òÎöÁË×÷ΪÉî¶Èѧϰ¾µäÍøÂçµÄ¾í»ýÉñ¾ÍøÂçËæ×ŲãÊý¼ÓÉ¾í»ýµÄsize¼õС£¬µ«¸öÊýѸËÙÔöÌí£¬´Ó¶øµ¼ÖÂȨÖؾØÕówµÄά¶È¼«¸ßµÄÎÊÌ⣻ͬʱÃæÁÙComputationºÍStorageµÄÄÑÌ⣬ҲÄÑÒÔÖ±½Ó°²ÅÅÔÚÒƶ¯¶Ë¡£»ùÓÚ´Ë£¬ÖܽÌÊÚÌá³öÁËÒ»ÖÖ½¥½øÖ÷ÒòËØÆÊÎö(PPCA)ÒªÁì¶Ô¾í»ý¾ÙÐнµÎ¬À´Ñ¹ËõÉî¶È¾í»ýÉñ¾ÍøÂç¡£Ïêϸ¶øÑÔ£¬´ÓÒ»¸öÔ¤ÏÈÖ¸¶¨µÄ²ã×îÏÈ£¬Öð²½Òƶ¯µ½×îºóµÄÊä³ö²ã¡£¹ØÓÚÿ¸öÄ¿µÄ²ã£¬PPCA½«Ã¿Ò»´ÎµÄ¾í»ý²ãreshape³ÉÒ»¸ö¾ØÕóºó£¬Ñ¡ÔñÀۼƷ½²îТ˳ÂÊ×î¸ßµÄ¼¸¸ö£¬¾ÙÐÐPCA½µÎ¬£¬Õ⽫ÏÔÖøïÔÌÄ¿½ñ²ãÖеÄÄÚºËÊýÄ¿¡£½µÎ¬ºó£¬Ä¿½ñ²ãµÄshape±¬·¢¸Ä±ä£¬Ó°ÏìÁËÏÂÒ»¸ö¾í»ý²ã£¬ÒªÏȶÔÏÂÒ»²ãµÄshape¾ÙÐÐÐÞÕýºóÔÙ¾ÙÐÐPCA½µÎ¬£¬ÓÉÓÚÄ¿½ñ²ãÖÐʹÓõÄÄÚºËÊýÄ¿¾öÒéÁËÏÂÒ»²ãµÄͨµÀÊýÄ¿£¬ÓÃÓÚÏÂÒ»²ãµÄͨµÀÒ²´ó´óïÔÌ£¬Õû¸öÄ£×ӽṹ¿ÉÒÔ±»´ó·ùѹËõ£¬²ÎÊýµÄÊýÄ¿ºÍÍÆÀí±¾Ç®¶¼¿ÉÒÔ´ó·ù½µµÍ¡£ÖܽÌÊÚ½«Æä³Æ֮Ϊ¡°Progressive Principle Component Analysis¡±¡£ÖܽÌÊÚµÄÑо¿ÖÐÔÚһЩ¾µäµÄCNNs (AlexNet, VGGNet, ResNetºÍMobileNet)ºÍ»ù×¼Êý¾Ý¼¯ÉÏÆÀ¹ÀÁ˸ÃÒªÁìµÄÓÐÓÃÐÔ¡£ÊµÑéÅú×¢£¬ÔÚijЩÌض¨Ä£×ÓÀPPCAµÄÄ£×ÓѹËõÂÊ´ó¡¢Õ¹ÍûËÙÂʿ죬²¢ÇÒ¾«¶ÈûÓÐÌ«´óËðʧ¡£µ«PPCAÎÞ·¨×öµ½ÔÚËùÓеÄÄ£×ÓÖж¼Áè¼ÝÆäËûµÄ¾ºÕùµÐÊÖ¡£×îºóÖܽÌÊÚÖ¸³ö£¬ÏÖÔÚPPCAûÓÐ˼Á¿ÔõÑùÑ¡È¡×îÓŵĵ÷Àí²ÎÊý£¬Òò´ËÉÐÓнøÒ»²½µÄÑо¿¿Õ¼ä¡£
ÒÔÐÅÏ¢ÊÖÒÕΪ´ú±íµÄµÚËĴι¤Òµ¸ïÃüÕýÍƶ¯×ÅÎÒÃÇ×ßÈëÈ˹¤ÖÇÄÜʱ´ú£¬ÅãͬȫÇòµÚÎå´Î¹¤Òµ×ªÒÆ£¬´óÊý¾ÝÕýÔÚ³¯×ÅÉú²úÒªËصÄÐÎ̬Ñݽø£¬Éî¶ÈѧϰÊǽüÄêÀ´Ëæ×ÅÈ˹¤ÖÇÄÜÐËÆð¶ø³ö¾µÂÊ×î¸ßµÄÃû´ÊÖ®Ò»£¬Óëͳ¼ÆѧµÄÍŽáÓëÅöײÊƱػá²Á³öеĻ𻨡£±¾´Î×êÑлá¶Ôͳ¼Æѧ¿ÆÓëÉî¶ÈѧϰµÄÍŽáÑо¿ÓëÉú³¤Æðµ½ÁËÆð¾¢×÷Óã¬Í¬Ê±Ò²Ôö½øÁËÏà¹ØÁìÓòר¼ÒѧÕßÃÇÖ®¼äµÄ½»Á÷Óë̽ÌÖ£¬ÎªÉú³¤Í³¼ÆÊý¾Ý¿ÆѧÁ¢Ò콨ÉèÁËÓÅÒìµÄƽ̨£¬Óë»áʦÉúÓëѧÕ߶¼ÌåÏÖ»ñÒæ·Ëdz¡£
¡¾Î°Òײ©ÉÌÎñͳ¼ÆÓ뾼üÆÁ¿Ïµ¡¿
ΰÒײ©ÉÌÎñͳ¼ÆÓ뾼üÆÁ¿Ïµ´«³Ð±±¾©´óѧÃ÷±æÉÆ˼¡¢º£ÄÉ°Ù´¨µÄóÆѧ¾«Éñ£¬±ü³ÖΰÒײ©ÖÎÀíѧԺ¡°´´Á¢ÖÎÀí֪ʶ£¬×÷ÓýÉ̽çÊ×ÄÔ£¬Íƶ¯Éç»áÇ°½ø¡±µÄÀúʷʹÃü£¬ÒÔ¡°Î°Òײ©Í·ÄÔÁ¦¡±ÎªÃª£¬¾Û½¹Ò»ÏµÁÐÉÌÎñͳ¼ÆÁìÓòÖØ´ó¿ÎÌâÕö¿ªÑо¿Ì½ÌÖ£¬ÖÂÁ¦ÓÚÍƸÐÈ˹¤ÖÇÄÜÓëͳ¼ÆѧÀíÂ۵Ľ»Á÷ÓëÉú³¤¡£ÖµÑ§Ôº½¨Éè35ÖÜÄêÖ®¼Ê£¬¼¯Î°Òײ©Ñ§ÕßÖ®Öǻۣ¬½¨Éî¶È½»Á÷֮ƽ̨£¬Í¨Ì«¹ýÏíÌÖÂÛѧÊõÑо¿Ð§¹û£¬ÖúÁ¦Ñ§ÊõÉú³¤£¬Íƶ¯Éç»áÇ°½ø¡£